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Abstract
The self-consistent fluid variational theory (SFVT) is used to calculate the
pressure dissociation of dense hydrogen and nitrogen at high temperatures.
The accurate high-pressure and high-temperature effective pair potentials are
adopted to describe the intermolecular interactions, which are made to consider
molecular dissociation. This paper focuses on a mixture of atoms and molecules
and is devoted to the study of the phenomenon of pressure dissociation at finite
temperature. The equation of state and dissociation degree are calculated from
the free energy functions in the temperature range 4000–15 000 K and density
range 0.1–3.2 g cm−3 for dense nitrogen and in the temperature range 2000–
10 000 K and density range 0.02–1.0 g cm−3 for dense hydrogen, which can be
compared with other approaches and experiments. The pressure dissociation is
found to occur in the higher density range, while temperature dissociation is a
more gradual effect.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Knowledge of the equation of state (EOS) for dense hydrogen and nitrogen is of central
importance for astrophysics as well as for the general understanding of the behavior of matter
at extreme conditions [1]. Pressure dissociation has been found to become important in dense
molecular fluids. The effective one-component model has been used to calculate the EOS of
fluid He + H2 mixtures [2]. The effects of dissociation on the EOS have been treated by using
the dissociation model [3]. Various models have also been applied to study the behavior of
hydrogen at ultrahigh pressure. For instance, the linear-mixing model of Ross [4], path-integral
Monte Carlo (PIMC) method [5], wavepacket molecular dynamics (WPMD) [6] and quantum
molecular dynamics (both density-functional (DF) [7] and tight-binding (TB) [8] approaches)
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have been performed for conditions reached in shock wave experiments. Furthermore, various
simulation methods have proven the importance of this effect by inspecting the variation of the
pair distribution function with density [9]. In particular, assuming that effective pair potentials
are valid for the interactions in a partially dissociated fluid, standard fluid variational theory
(FVT) has been applied to a system with the dissociation reaction [10].

Developments in shock wave experimental techniques have been able to reach pressures
to be probed beyond 100 GPa in hydrogen and nitrogen [11, 12]. The principal Hugoniot was
determined up to 300 GPa in recently reported single shock wave laser driven experiments [13].
It has been shown that dissociation of hydrogen and nitrogen molecules becomes operative
under such ultrahigh pressures. The multiple-shock Hugoniots of liquid nitrogen have been
calculated by Mazevet et al using a finite-temperature density-functional theory (DFT) at
the generalized gradient approximation (GGA) level [14, 15]. In this paper, we generalize
standard fluid variational theory to a two-component system with a dissociative reaction for
pressure dissociation in dense hydrogen and nitrogen. The dissociation equilibrium A2 � 2A
(A = H, or N) reflects the very subtle changes in the electronic and structural properties at high
pressures via correlation contributions which are consistent with the equation of state. The
composition is determined self-consistently taking into account all correlations, especially the
A–A2 interaction, when fulfilling the condition of chemical equilibrium, μA2 = 2μA, for the
corresponding reaction A2 � A + A.

2. Theoretical model

At sufficiently high temperatures and pressures, molecular A2 will dissociate into atoms. It is
adequately described as a mixture of A atoms and A2 molecules. The chemical equilibrium
between atoms and molecules A2 � A + A is considered to calculate the dissociation degree
of the fluid.

Supposing that the dense fluid hydrogen/nitrogen consists of atoms and molecules which
interact via the effective pair potentials described in the three-parameter potential of the
exponential-6 form [16], we introduce the expression for the free energy of a two-component
system with a reaction and give the other thermodynamic quantities. Considering in the
following the dense hydrogen/nitrogen fluid at a fixed temperature T , and particle density n,
we study the dissociation processes

A2 � A + A. (1)

In order to define the thermodynamics of the system, we introduce the free energy per particle
f tot = F tot/N and the degree of dissociation α = N1/N ; N = N1 + N2 is the total number of
particles. The free energy is given as a sum of the ideal contributions of the pure components
f id
i (with i = 1, 2, 1 = A, 2 = A2) and a term for the correlations among all particles f c

i j,

f tot =
∑

i j

( f id
i + f c

i j ). (2)

The correlation part is determined variationally using the Gibbs–Bogolyubov inequality. In
particular, one obtains in the case of a hard-sphere (HS) reference system

f cor =
∑

i j

f c
i j ≈ min

η1,η2

{ fHS[T, α, η1, η2] + α f11[αn, η1] + 2α(1 − α) f12[n, η1, η2]

+ (1 − α) f22[(1 − α)n, η2]}. (3)

The correlation contributions fi j are given by integrals over the effective pair potential φi j(r)

and the respective pair distribution functions gi j(r) which are approximated by those of the
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hard-sphere reference system.

fi j = 12η

∫ ∞

1
x2φi j(di x)gi j(αi , x, ηi , η j ) dx, (4)

where x = r/d , and di = [6ηi/(παi n)]1/3. The free energy of a binary hard-sphere
reference system fHS is taken from [17]. The pair distribution functions of the hard-sphere
reference system use the Percus–Yevick approximation. The total free energy of mixtures of
hydrogen/nitrogen atoms and molecules is given by

f tot(n, T, α) = α f id
1 (αn, T ) + (1 − α) f id

2 [(1 − α)n, T ] + f cor(n, T, α). (5)

The minimization of the correlation free energy f cor in equation (3) is with respect to the
packing fractions ηi , which is equivalent to minimizing with respect to the hard-sphere
diameters di , and can be performed by the downhill simplex method in multi-dimension.

Pressure dissociation occurs in dense hydrogen/nitrogen as the temperature and pressure
are increased. The fraction α of dissociation molecules is determined by the correlation
contributions to the chemical potential according to

nA2 = n2
A�3

A√
2

σ int exp(D0 − μcor
2 + 2μcor

1 ), (6)

where D0 is the dissociation energy of isolated A2 molecules and �A the thermal wavelength
of A atoms. σ int denotes the internal partition function of vibrational, rotational, and electronic
states. Thus we see from equation (6) that the dissociation energy is effectively lowered
by the introduction of μcor

2 and μcor
1 . Therefore, the modification of the binding energy of

hydrogen/nitrogen molecules is according to follow formula:

�μcor = μcor
2 − 2μcor

1 . (7)

Let us define an effective dissociation energy Deff as

Deff = D0 − �μcor = D0 − μcor
2 + 2μcor

1 . (8)

The condition of chemical equilibrium μ2 = 2μ1 for the reaction equation (1) has to be fulfilled
self-consistently within the free energy minimization as the above description by taking into
account the correlation contributions to the chemical potentials. Then the pressure (P) and the
internal energy (E) of the system can be calculated from the total free energy equation (5) by
derivatives.

3. Results and discussion

A reliable performance of self-consistent fluid variational theory has been verified via
calculating the Hugoniot of liquid nitrogen and deuterium. Comparisons with available
experimental results [18–20] demonstrate that the SFVT calculations can reasonably reproduce
the major trends in the basic nitrogen and hydrogen properties along the principal Hugoniot.

Figure 1 shows the surface of the dissociation degree of fluid hydrogen as a function
of density and temperature in the ranges 0.02–1.0 g cm−3 and 4000–10 000 K. It can be
noted that there is a minimum in each of the dissociation curves (α–ρ plane) from 4000 to
10 000 K. Depending on the values of temperature and density we find different locations of the
minimum. The position of the minimum is shifted towards an elevated density with increase of
temperature. The pressure dissociation increases strongly at densities above 0.5 g cm−3, while
temperature dissociation is a more gradual effect.

In figure 2, the pressure is shown as a function of temperature for a constant volume
of V = 6.0 cm3 mol−1 (rs = 2, where rs = d/aB is the mean distance d between the
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Figure 1. The surface of the dissociation degree of fluid hydrogen as a function of density and
temperature.
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Figure 2. Pressure as a function of temperature for a constant specific volume V = 6 cm3 mol−1.

electrons in units of the Bohr radius aB). The present SFVT is compared with path-integral
Mote Carlo (PIMC) method [21, 22], quantum molecular dynamics (QMD) [7] simulations
based on a tight-binding electronic structure calculation, tight-binding molecular dynamics
(TBMD) [23], wavepacket molecular dynamics (WPMD) [24] simulations, and the linear-
mixing (LM) model [25]. The present results lie between WPMD and the LM model in the
entire temperature range. The pressure increases very slowly with increasing temperature
between 5000 and 14 000 K, which indicates where the dissociation occurs. The pressure–
temperature curves from WPMD and the LM model show a similar behavior of the pressure
but at values higher and lower than the present absolute values, respectively. The deviations
of the present calculations from the WPMD and the LM method are because the dissociation
reaction has been not included in the WPMD and the LM method. The present SFVT and
WPMD calculations show an increase of pressure with increasing temperature up to about
5000 K. Further increase in temperature causes the dissociation of the molecules to atoms,
which leads to a decrease of the thermal pressure. This effect nearly cancels the increase of
the kinetic energy with temperature, so we observe a region with (∂p/∂T )n ≈ 0 between 5000
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Figure 3. The surface of the pressure of H–H2 mixtures as a function of density and temperature.
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Figure 4. Effective dissociation energy of nitrogen as a function of temperature and pressure.

and 12 000 K. PIMD seems to overestimate the effect of dissociation below 10 000 K, so a
region with (∂p/∂T )n < 0 occurs. The additional considerations of ionization in our model
would lead to lower pressure at higher temperatures. Therefore, the present SFVT is applicable
to calculate the EOS of dense hydrogen in the temperatures range 2000–10 000 K and density
range 0.02–1.0 g cm−3.

The equations of state of the fluid H–H2 mixtures in the temperature range 4000–10 000 K
and density range 0.02–1.0 g cm−3 have been predicted. The surface of the pressure of fluid
hydrogen as a function of density and temperature is shown in figure 3. As can be seen, the
pressure at low densities strongly depends on temperature, while in the intermediate-density
region the pressure of fluid hydrogen increases with increasing density and temperature. At
even higher densities, the pressure is a strong function of density for the fluid hydrogen.

Figure 4 shows a trajectory of the effective dissociation energy of dense fluid nitrogen as
a function of temperature and pressure. It can be seen that Deff will approach the dissociation
energy (D0 = 9.91 eV) of isolated N2 molecules at pressure P → 0, and it decreases
with increase of pressure and temperature, whereas Ross’ effective dissociation energy [19],
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Figure 5. Contour of dissociation degree of fluid nitrogen as a function of density and temperature.
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Figure 6. Concentration of atomic and molecular nitrogen as a function of density.

D = D0 − A(V0 − V )2, depends on the parameters A, V0, and specific volume V . The
correlation contribution in equation (6) yields a lowering of dissociation energy, so pressure
dissociation becomes operative already in the neutral fluid. Neglecting these terms, almost no
dissociation would occur at these conditions.

Figure 5 shows the contour of dissociation degree of fluid nitrogen as a function of density
and temperature in the ranges 0.01–3.2 g cm−3 and 5000–15 000 K. The SFVT produces
pressure and temperature dissociation varying continuously as either the density or temperature
increases.

Figure 6 shows the concentration of atomic and molecular nitrogen as a function of density
at 11 000 K. Between ρ = 0.1 and 0.8 g cm−3, it shows strong recombination as described in
the law of mass action. At higher densities, strong non-ideal correlation effects come into
play, decreasing the dissociation energy and favoring molecular dissociation. Temperature
dissociation effects are clearly displayed by the low-density part of the isotherm sequence. Note
that the nitrogen molecules are the dominant species in the density range ∼0.1–3.1 (g cm−3);
nitrogen atoms are the dominant species outside this density range.
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Figure 7. Surface of pressure of fluid nitrogen as a function of density and temperature.

The equations of state of the fluid N–N2 mixtures in the temperature range 5000–15 000 K
and density range 0.1–3.2 g cm−3 have been predicted. The surface of the pressure of fluid
nitrogen as a function of density and temperature is shown in figure 7. As can be seen, the
pressure at low densities, about 0.1–1.5 g cm−3, strongly depends on the temperature, while in
the intermediate density region, about 1.5–2.5 g cm−3, the pressure of fluid nitrogen increases
with increasing density and temperature. At even higher densities, the pressure increases with
density slightly more strongly.

4. Conclusion

The present self-consistent fluid variational theory has been successfully applied to treat
dissociation processes of fluid molecules and to determine the equation of state of a mixture of
fluid nitrogen/hydrogen atoms and molecules over a wide range of temperatures and densities.
An important feature of the current model is the introduction of correction of the dissociation
energy by fulfilling self-consistently when minimizing the free energy in the condition of
chemical equilibrium for the reaction A2 � 2A. The quantities �μcor = μcor

2 − 2μcor
1 are

given by the interactions with the chemical potentials and yield a shift of chemical equilibria
compared with the ideal Saha equations. They can be interpreted as lowering of the respective
dissociation energies with increasing density, which leads to pressure dissociation. The SFVT
produces pressure and temperature dissociation varying continuously as either the density or
temperature increases.
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